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Local Grayvalue Invariants for
Image Retrieval

Cordelia Schmid and Roger Mohr

Abstract —This paper addresses the problem of retrieving images from
large image databases. The method is based on local grayvalue
invariants which are computed at automatically detected interest
points. A voting algorithm and semilocal constraints make retrieval
possible. Indexing allows for efficient retrieval from a database of more
than 1,000 images. Experimental results show correct retrieval in the
case of partial visibility, similarity transformations, extraneous features,
and small perspective deformations.

Index Terms —Image retrieval, image indexing, graylevel invariants,
matching, interest points.

————————   ✦   ————————

1 INTRODUCTION

This paper addresses the problem of matching an image to a large
set of images. The query image is a new (partial) image of an ob-
ject imaged in the database. The image may be taken from a differ-
ent viewing angle (made precise below).

1.1 Existing Recognition Methods
Existing approaches in the literature are of two types: those that
use geometric features of an object and those that rely on the lu-
minance signature of an object.

Geometric approaches model objects by 3D properties such as
lines, vertices and ellipses and try to extract these features in order
to recognize the objects. General surveys on such model-based
object recognition systems are presented in [1], [2]. These methods
generally comprise three components: matching, pose computa-
tion, and verification. The key contribution of several recognition
systems has been a method of cutting down the complexity of
matching. For example, tree search is used in [3] and recursive
evaluation of hypotheses in [4]. In indexing, the feature corre-
spondence and search of the model database are replaced by a
look-up table mechanism [5], [6], [7]. The major difficulty of these
geometry based approaches is that they use human-made models
or require CAD-like representations. These representations are not
available for objects such as trees or paintings; in the case of
“geometric” objects, these CAD-like representations are difficult to
extract from the image.

An alternative approach is to use the luminance information of
an object. The idea is not to impose what has to be seen in the im-
age (points, lines º) but rather to use what is really seen in the
image to characterize an object. The first idea was to use color
histograms [8]. Several authors have improved the performance of
the original color histogram matching technique by introducing
measures which are less sensitive to illumination changes [9], [10],
[11], [12]. Instead of using color, grayvalue descriptors can also be
used for histograms [13]. Another idea is to use a collection of
images and reduce them in an eigenspace. This approach was first
used in [14] for face recognition and then in [15] for general ob-
jects. A different reduction is proposed in [16] who learns features

which best describe the image. It is also possible to compute local
grayvalue descriptors at points of a global grid. The descriptors
are either steerable filters [17] or Gabor filters [18], [19]. In the case
of partial visibility grid placement gets difficult, as the grid cannot
be centered.

1.2 Our Approach
All of the existing luminance approaches are global and therefore
have difficulty in dealing with partial visibility and extraneous
features. On the other hand, geometric methods have difficulties
in describing “nongeometric” objects and they have problems
differentiating between many objects. Local computation of image
information is necessary when dealing with partial visibility;
photometric information is necessary when dealing with a large
number of similar objects. The approach described here uses local
grayvalue features computed at interest points as displayed in
Fig. 1. Interest points are local features with high informational
content (Section 2).

The local characteristics used in this work are based on differ-
ential grayvalue invariants [20], [21]. This ensures invariance un-
der the group of displacements within an image. A multiscale
approach [22], [23] makes this characterization robust to scale
changes, that is to similarity transformations (Section 3). Due to a
stable implementation of these invariants, a reliable characteriza-
tion of the signal is obtained. Moreover, this characterization is
significant, as it is computed at interest points.

A voting algorithm makes retrieval robust to mismatches as
well as outliers. Outliers are caused by misdetection of feature
points and extraneous features. Semilocal constraints reduce the
number of mismatches. Furthermore, indexing via a multidimen-
sional hash-table makes fast retrieval possible (Section 4).

Fig. 1. Representation of an image.

Our approach allows the handling of partial visibility and
transformations such as image rotation and scaling (Section 5).
Experiments have been conducted on a set of more than a thou-
sand images, some of them very similar in shape or texture. The
high recognition rate is the result of careful design in which ro-
bustness to outliers and tolerance to image noise were considered
at each step.

2 INTEREST POINTS

Computing image descriptors for each pixel in the image creates
too much information. Interest points are local features at which
the signal changes two-dimensionally. The use of interest points
has advantages over features such as edges or regions, particularly
robustness to partial visibility and high informational content.

A wide variety of detectors for interest points exists in the lit-
erature, the reader is referred to [24] for an exhaustive overview.
In the context of matching, detectors should be repeatable. A com-
parison of different detectors under varying conditions [25] has
shown that most repeatable results are obtained for the detector of
Harris and Stephens [26]. The basic idea of this detector is to use
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the auto-correlation function in order to determine locations
where the signal changes in two directions. A matrix related to the
auto-correlation function which takes into account first derivatives
of the signal on a window is computed:
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The eigenvectors of this matrix are the principal curvatures of
the auto-correlation function. Two significant values indicate the
presence of an interest point.

Fig. 2 shows interest points detected on the same scene under
rotation. The repeatability rate is 92 percent, which means that 92
percent of the points detected in the first image are detected in the
second one. Experiments with images taken under different con-
ditions show that the average repeatability rate is about 90 per-
cent. Moreover, 50 percent repeatability is sufficient for the re-
maining process if we use robust methods.

     

Fig. 2. Interest points detected on the same scene under rotation. The
image rotation between the left image and the right image is 155 de-
grees. The repeatability rate is 92 percent.

3 MULTISCALED DIFFERENTIAL GRAYVALUE
INVARIANTS

Our characterization is based on derivatives which locally describe
an image. In order to obtain invariance under the group SO(2) of
rigid displacements in the image, differential invariants are com-
puted. These invariants are then inserted into a multiscale frame-
work in order to deal with scale changes. Therefore the characteri-
zation is invariant to similarity transformations which are addi-
tionally quasi-invariant to 3D projection (see [27]).

3.1 Local Jet
The image in a neighborhood of a point can be described by the set
of its derivatives. Their stable computation is achieved by convo-
lution with Gaussian derivatives [28], [22], [23]. This set of deriva-
tives has been named “local jet” by Koenderink and van Doorn
[20] and defined as follows:

Let I be an image and s a given scale. The “local jet” of order N
at a point x = (x1, x2) is defined by
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in which Li in1K x,sc h  is the convolution of image I with the Gaus-

sian derivatives Gi in1K x,sc h  and i x xk Œ 1 2,m r .

The s of the Gaussian function determines the quantity of
smoothing. This s also coincides with a definition of scale-space
which will be important for our multiscale approach. In the fol-
lowing, s  will be referred to as the size of the Gaussian.

3.2 Complete Set of Differential Invariants
In order to obtain invariance under the group SO(2), differential
invariants are computed from the local jet. Differential invariants
have been studied theoretically by Koenderink and van Doorn [20]
and by Romeny and colleagues [28], [22], [23]. A complete set of

invariants can be computed that locally characterizes the signal.
The set of invariants used in this work is limited to third order.
This set is stacked in a vector, denoted by 9. In [1], vector 9 is
given in tensorial notation—the so-called Einstein summation
convention. Notice that the first component of 9 represents the
average luminance, the second component the square of the gradi-
ent magnitude, and the fourth the Laplacian.
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with Li being the elements of the “local jet” and eij the 2D anti-

symmetric epsilon tensor defined by e12 = -e21 = 1 and e11 = e22 = 0.

3.3 Multiscale Approach
To be insensitive to scale changes the vector of invariants has to be
calculated at several scales. A methodology to obtain such a mul-
tiscale representation of a signal has been proposed in [31], [22],
[23].

For a function f, a scale change a can be described by a simple
change of variables, f(x) = g(u) where g(u) = g(u(x)) = g(ax). For the
nth derivatives of f, we obtain f(n)(x) = ang(n)(u). Theoretical invari-
ants are then easy to derive, for example,
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is such an invariant.
However, in the case of a discrete representation of the func-

tion, as for an image, derivatives are related by:
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with Gi i1 2K  being the derivatives of the Gaussian.

Equation (2) shows that the size of the Gaussian has to be ad-
justed which implies a change of the calculation support. As it is
impossible to compute invariants at all scales, scale quantization is
necessary for a multiscale approach. Often a half-octave quantiza-
tion is used. The stability of the characterization has proven this
not to be sufficient. Experiments have shown that matching based
on invariants is tolerant to a scale change of 20 percent (see [25]).
We have thus chosen a scale quantization which ensures that the
difference between consecutive sizes is less than 20 percent. As we
want it to be insensitive to scale changes up to a factor of two, the
size s varies between 0.48 and 2.07, its values being: 0.48, 0.58,
0.69, 0.83, 1.00, 1.20, 1.44, 1.73, 2.07.

4 RETRIEVAL ALGORITHM

To retrieve an image, it is necessary to decide if two invariant
vectors are similar. Similarity is quantified using the Mahalanobis
distance. To define the distance for a set of vectors which includes
outliers to the database a voting algorithm has to be used. An in-
dexing technique make access fast; and semilocal constraints allow
to reduce mismatches.

4.1 Vector Comparison by Mahalanobis Distance
A standard method is to model the uncertainties in the compo-
nents as random variables with Gaussian distribution and use the
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Mahalanobis distance dM to compare invariant vectors. This dis-
tance takes into account the different magnitude as well as the

covariance matrix L of the components. For two vectors a and b,

dM
Tb a b a b a,c h b g b g= - --L 1 .

The square of the Mahalanobis distance is a random variable

with a c2 distribution. Since the square root function is a bijection

from R
+ to R

+, it is possible to use a table of this distribution to
threshold the distance and then to reject the k percent of values
that are most likely to correspond to false matches.

In order to obtain accurate results for the distance, it is impor-
tant to have a representative covariance matrix which takes into
account signal noise, luminance variations as well as imprecision
of the interest point location. As a theoretical computation seems
impossible to derive given realistic hypotheses, we estimated it
statistically by tracking interest points in image sequences.

The Mahalanobis distance is impractical for implementing a
fast indexing technique. However, a base change makes conver-

sion into the standard Euclidean distance dE possible. As the co-
variance matrix is a real symmetric (semi) definite positive matrix,

it can be decomposed into L-1 = PTDP where P is orthogonal and D
is diagonal. We then have

d d DP DPM Ea b a b, ,c h d i= .

4.2 Indexing and Voting Algorithm
4.2.1 Voting Algorithm

A database contains a set {Mk} of models. Each model Mk is defined

by the vectors of invariants {9j} calculated at the interest points of

the model images. During the storage process, each vector 9j is
added to the database with a link to the model k for which it has
been computed. Formally, the simplest database is a table of cou-

ples (9j, k).
Recognition consists of finding the model M

k$
 which corre-

sponds to a given query image I, that is the model which is most

similar to this image. For this image, a set of vectors {9l} is com-
puted which corresponds to the extracted interest points. These

vectors are then compared to the 9j of the base by computing:

dM(9l,�9j) = dl,j "(l, j). If this distance is below a threshold t ac-

cording the c2 distribution, the corresponding model gets a vote.
As in the case of the Hough transform [32], the idea of the vot-

ing algorithm is to sum the number of times each model is se-
lected. This sum is stored in the vector T(k). The model that is se-
lected most often is considered to be the best match: The image
represents the model M

k$
 for which $ arg maxk T kk= b g .

Fig. 3 shows an example of a vector T(k) in the form of a histo-
gram. Image 0 is correctly recognized. However, other images
have obtained almost equivalent scores.

4.2.2 Multidimensional Indexing
Without indexing the complexity of the voting algorithm is of the
order of l ¥ N where l is the number of features in the query image
and N the total number of features in the data base. As N is large
(about 150,000 in our tests) efficient data structures need to be used.

Search structures have been extensively studied. An overview
of all tree-like data structures that allow fast and/or compact ac-
cess to data is presented in [33]. The data structure used here is not
referenced in the previous review; it can be seen as a variant of k-d
trees.

Fig. 3. Result of the voting algorithm: The number of votes is displayed
for each model image. Image 0 is recognized correctly.

Here, each dimension of the space is considered sequentially.
Access to a value in one dimension is made through fixed size one-
dimensional buckets. Corresponding buckets and their neighbors
can be directly accessed. Accessing neighbors is necessary to take
into account uncertainty. A bucket is extended in the next dimen-
sion if the number of values stored is above a threshold. Therefore
the data structure can be seen as a tree with a depth which is at
most the number of dimensions of the stored vectors. The com-
plexity of indexing is of the order of one (number of features of the
query image).

This indexing technique leads to a very efficient recognition.
The database contains 154,030 points. The mean retrieval time for
our database containing 1,020 objects is less than five seconds on a
Sparc 10 Station. Performance could be further improved by par-
allelisation, as each vector is processed separately.

4.3 Semilocal Constraints
A given feature might vote for several models. Having a large
number of models or many very similar ones raises the probability
that a feature will vote for several models. Califano and Mohan
[34] suggested that using longer vectors decreases this probability.
Yet the use of higher order derivatives for our invariants is not
practical. Another way to decrease the probability of false matches
is to use global features. However, global characteristics are sensi-
tive to extraneous features and partial visibility.

Our solution is the use of local shape configurations, as in
Fig. 4. Semilocal constraints have previously been used in [35],
[36]. For each feature (interest point) in the database, the p closest
features in the image are selected. If we require that all p closest
neighbors are matched correctly, we suppose that there is no mis-
detection of points. Therefore, we require that at least 50 percent of
the neighbors match. In order to increase the recognition rate fur-
ther, a geometric constraint is added. This constraint is based on
the angle between neighbor points. As we suppose that the trans-
formation can be locally approximated by a similarity transforma-
tion, these angles have to be locally consistent, for example the
angles a1 and a2 in Fig. 4. An example using the geometrical co-
herence and the semilocal constraints is displayed in Fig. 5. It gives
the votes if constraints are applied to the example in Fig. 3. The
score of the object to be recognized is now much more distinctive.

4.4 Multiscale Approach
The multiscale approach can be very easily integrated into the
framework presented above. For a query image, invariants are
computed at several scales (see Section 3). Invariants in the data-
base are only stored for one scale. Matching invariants computed
at several scales to invariants computed at one scale increases the
possibility of wrong matches and makes semilocal constraints
even more essential. These constraints implicitly include a scale
constraint, as the invariants for a point and its neighbors are cal-
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culated at the same scale. Hence, if a point and its neighbors
match, the scale constraint is fulfilled. Thus, using these con-
straints, the multiscale approach works efficiently as is demon-
strated in the next section.

Fig. 4. Semilocal constraints: Neighbors of the point have to match and
angles have to correspond. Note that not all neighbors have to be
matched correctly.

Fig. 5. Result of applying semilocal constraints: The number of votes is
displayed for each model image. Semilocal constraints decrease the
probability of false votes. Image 0 is recognized much more distinc-
tively than in Fig. 3.

5 EXPERIMENTAL RESULTS

Experiments have been conducted for an image database contain-
ing 1,020 images. They have shown the robustness of the method
to image rotation, scale change, small viewpoint variations, partial
visibility and extraneous features. The obtained recognition rate is
above 99 percent for a variety of test images taken under different
conditions.

5.1 Content of the Database
The database includes different kinds of images such as 200
paintings, 100 aerial images and 720 images of 3D objects (see
Fig. 6). The 3D objects include the Columbia database. These im-
ages are of a wide variety. However, some of the painting images
and some of the aerial images are very similar. This leads to ambi-
guities which the recognition method is capable of dealing with.

In the case of a planar 2D object, an object is represented by one
image in the database. This is also the case for nearly planar ob-
jects as for aerial images. A 3D object has to be represented by
images taken from different viewpoints. Images are stored in the
database with 20 degrees of viewpoint changes.

5.2 Recognition Results
In this section, some examples illustrate the different conditions
under which the method can still operate correctly. A systematic
evaluation for a large number of test images taken under different
conditions is then presented. More details are given in [25].

5.2.1 Some Examples of Correct Recognition
Three examples of correct recognition are displayed, one for each
type of image. For all of them, the image on the right is stored in

the database. It is correctly retrieved using any of the images on
the left. Fig. 7 shows recognition of a painting image in the case of
image rotation and scale change. It also shows that correct recog-
nition is possible if only part of an image is given.

Fig. 6. Some images of the database. The database contains 1,020
images.

Fig. 7. The image on the right is correctly retrieved using any of the
images on the left. Images are rotated, scaled, and only part of the
image is given.

In Fig. 8 an example of an aerial image is displayed. It shows
correct retrieval in the case of image rotation and if part of an im-
age is used. In the case of aerial images, we also have to deal with
a change in viewpoint and extraneous features. Notice that build-
ings appear differently because viewing angles have changed and
cars have moved.

Fig. 9 shows recognition of a 3D object. The object has been cor-
rectly recognized in the presence of rotation, scale change, change
in background and partial visibility. In addition, there is a change
of 10 degrees of viewpoint position between the two observations.
Notice that the image of the object has not only been recognized
correctly, but that the closest stored view has also been retrieved.

5.2.2 Systematic Evaluation of Retrieval
The method is evaluated for different transformations—image
rotation, scale change, viewpoint variations—as well as for partial
visibility.

5.2.2.1 Image Rotation
To test invariance to image rotation, images were taken by rotating
the camera around its optical axis. The recognition rate obtained is
100 percent for different rotations equally distributed over a circle.
This experiment shows that the characterization is completely
invariant to image rotation.
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5.2.2.2 Scale Change
Experiments were conducted on zoomed images. Using a multi-
scale approach, the recognition rate attains a score of 100 percent
up to a scale change of two. At present, this factor seems to be the
limit for our method. However, this limit is not due to our invari-
ant characterization but rather to the stability of the interest point
detector. The repeatability of this detector decreases rapidly when
the scale change is greater than 1.6.

Fig. 9. The image on the right is correctly retrieved using any of the
images on the left. The 3D object is in front of a complex background
and only partially visible.

5.2.2.3 Viewpoint Variation
Test images are taken at angles different from the images stored in
the base. Each aerial image has been taken from four different
viewpoints. Viewpoint number one is stored in the base. For im-
ages taken from different viewpoints, the recognition rate is 99
percent. The only image which is not recognized correctly is part
of the harbour and contains only water on which no reliable inter-
est points can be identified.

For 3D objects, test images have been taken at 20 degrees dif-
ference in viewing angle. The viewing angles of the test images lie
in between two images stored in the base. The recognition rate is
99.86 percent. It is interesting to consider only the Columbia data-
base which serves as a benchmark for object recognition. On this
base a 100 percent recognition rate has been obtained in [15] as
well as in [17]. Experiments show that our method attains the
same recognition rate.

5.2.2.4 Partial Visibility
Parts of different size are extracted randomly from painting im-
ages. The relative size varies between 10 percent and 100 percent.
For parts of relative size greater than or equal to 30 percent, the
recognition rate is 100 percent. For a relative size of 20 percent, a
95 percent rate is obtained; and for a relative size of 10 percent, a
90 percent rate. Considering the size of our database, this can be
explained by the fact that points are very discriminating and thus
only a few points are necessary to recognize an image. It is thus
possible to retrieve an image even if only part of this image is
given. However, very small parts do not contain enough points, so
the number of votes is limited. In this case, the robust algorithm
can not overcome the statistical uncertainty.

6 CONCLUSION

This paper has shown that the differential graylevel invariants
introduced by Koenderink efficiently characterize points. These
invariants describe the image locally. As automatically de-
tected interest points are characteristics of patterns, invariants
calculated at interest points can be used for indexing 2D
graylevel patterns. A voting algorithm and multidimensional
indexing make image retrieval possible. However, blindly
voting on individual invariants is not sufficient to guarantee
the correctness of the answer in database indexing. It is then
crucial to introduce a semilocal coherence between these iden-
tifications. This increases the recognition rate. Experiments
conducted on a database containing 1,020 images have shown
very good results. Even small parts of images can be recog-
nized correctly. This is due to the fact that the proposed char-
acterization is very discriminating.

Finally, different extensions are possible. The voting algorithm can
be improved by taking into account the statistical distributions of the
invariants; some of the invariants are more discriminating than others.
In addition, computation of a confidence value is then possible.

Using global consistency checking for local matches or a global
constraint such as the epipolar geometry is another possible exten-
sion. Such additional constraints further increase the recognition
rate and make detection of several objects possible.
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